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Abstract
In this paper we prove universality of random matrix fluctuations of the last
passage time of last passage percolation (LPP) in thin rectangles. The proof
is a simple corollary of a theorem of Chatterjee. This gives an alternative
(and more elementary) proof of the same result in Baik and Suidan (2005 Int.
Math. Res. Not. 325–37) and Bodineau and Martin (2005 Electron. Commun.
Probab. 10 105–12 (electronic)) in the special case of finite third moment.

PACS number: 02.10.Yn

1. Introduction

Random matrix theory (RMT) has been an active area of research ever since the pioneering
papers of Wigner [23] and Dyson [11]. However, an explosion of research during the
past decade has revealed that fundamental probability distributions first encountered in the
fluctuation theory of RMT are in fact far more prevalent than at first expected. In particular,
these distributions arise in areas as diverse as number theory, combinatorics, representation
theory, statistics, graph theory and probability (see, for example, [1, 15, 22, 9, 17]).

One particularly striking example in which random matrix theory plays a role is in
the problem of last passage percolation. Consider the N × N lattice and a family of
associated independent identically distributed random variables

{
X

j

i

}∞
i,j=1. An up/right path

π from the site (1, 1) to the site (N, k) is a collection of sites {(ik, jk)}N+k−1
k=1 satisfying

(i1, j1) = (1, 1), (iN+k−1, jN+k−1) = (N, k) and (ik+1, jk+1) − (ik, jk) ∈ {(1, 0), (0, 1)}. Let
(1, 1) ↗ (N, k) denote the set of such up/right paths. The directed first and last passage times
to (N, k) ∈ N × N, denoted by Lf (N, k) and Ll(N, k), respectively, are defined by

Lf (N, k) = min
π∈(1,1)↗(N,k)

∑
(i,j)∈π

X
j

i , (1)

Ll(N, k) = max
π∈(1,1)↗(N,k)

∑
(i,j)∈π

X
j

i . (2)
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If X
j

i is interpreted as the time to pass the site (i, j), Lf (N, k) and Ll(N, k) represent the
minimal and maximal times, respectively, to travel from the site (1, 1) to (N, k) along an
admissible path. Since the directed last passage percolation time can be viewed as the
departure time in queuing theory (see e.g. [12]), the discussion below applies to queuing
theory. The discussion below also applies to the flux of particles at a given site in the totally
asymmetric simple exclusion process (see e.g. [20]).

Johansson [14] discovered that if
{
X

j

i

}∞
i,j=1 are independent identically distributed

geometric random variables with parameter q, then the probability distribution for the correctly
normalized fluctuations of the last passage time, Ll , is given by the Tracy–Widom Gaussian
unitary ensemble (GUE) distribution function, FGUE [21]. The precise statement of this
remarkable fact is as follows. For any ρ ∈ (0, 1],

lim
N→∞

P

(
Ll(N, �ρN�) − c1(ρ, q)N

c2(ρ, q)N
1
3

� s

)
= FGUE(s), (3)

where c1 and c2 are explicit constants (depending only on ρ and q) and FGUE is given by

FGUE(x) = exp

{
−

∫ ∞

x

(s − x)q2(s) ds

}
, (4)

where q(x) solves the Painlevé II equation,

q ′′ = 2q3 + xq (5)

subject to the condition that q(x) ∼ Ai(x) as x → +∞; Ai(x) denotes the Airy function. The
function FGUE is the limiting distribution function for the largest eigenvalue of a matrix chosen
from the GUE as the dimension of the matrices grows to infinity (see [17, 21]). Johansson
[14] also proved this result for exponential random variables. There are a few more models
with different kinds of admissible paths that were proven to have the same limit law [2, 3, 13].

Johansson’s proof relies heavily on the fact that
{
X

j

i

}∞
i.j=1 are chosen to be geometric

random variables; however, it is expected that a similar statement to (3) is true (for the
fluctuations) for some fairly robust class of random variables. This remains a challenging
open problem.

Recently, there have been several attempts to generalize Johansson’s result [4, 6]. Both of
these papers study the last passage problem for general random variables in thin rectangles (as
opposed to the full scaling Johansson studies) by using certain natural functionals of Brownian
motion and various strong approximation theorems which couple random walks to Brownian
motion. The strong approximation/coupling results used in [4] and [6] are the Skorohod
embedding theorem [10] and the Komlos, Major, Tusnady (KMT) theorem [16], respectively.
The KMT theorem couples random walks whose increments have finite pth (p > 2) moment
to Brownian motion while the Skorohod embedding theorem provides a coupling under the
assumption p = 4. Both [4] and [6] obtain precisely the same result when p = 4. We record
the general result as follows.

Theorem 1 ([6], see also [4] when p = 4). Suppose that
{
X

j

i

}∞
i,j=1 is a family of independent

identically distributed random variables such that EX
j

i = µ, E
∣∣Xj

i

∣∣2 − µ2 = σ 2 and

E
∣∣Xj

i

∣∣p < ∞ for some p > 2. For any s ∈ R,

lim
N,k→∞

P

(
Ll(N, k) − µ(N + k − 1) − 2σ

√
Nk

σk−1/6N
1
2

� s

)
= FGUE(s), (6)
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lim
N,k→∞

P

(
Lf (N, k) − µ(N + k − 1) + 2σ

√
Nk

σk−1/6N
1
2

� s

)
= 1 − FGUE(−s), (7)

where k = o(Nα) and α < 6
7

(
1
2 − 1

p

)
.

The centring and normalization in theorem 1 can be explained in connection to random matrix
theory, non-colliding random walks, and Brownian motion. The first term in the centring,
µ(N + k − 1), simply centres the random variables

{
X

j

i

}∞
i,j=1 to have mean 0. The second

term, 2σ
√

Nk, is more interesting. If the random variables
{
X

j

i

}∞
i,j=1 have mean 0, then as

N → ∞ while k remains fixed, the distribution of N− 1
2 Ll(N, k) converges to that of the top

eigenvalue of a k × k-GUE random matrix (see [5, 13, 19] for different perspectives on this
fact). In order to arrive at the GUE Tracy–Widom limiting distribution for the top eigenvalue,
λ

(k)
1 , of a k × k-GUE random matrix as k → ∞, it is well known in random matrix theory that

one scales as follows:

lim
k→∞

P
(
k

1
6
(
λ

(k)
1 − 2σ

√
k
)

� s
) = FGUE(s). (8)

This is exactly the scaling in theorem 1 with the important difference that N, k → ∞
simultaneously.

It seems that when one uses either strong approximation/coupling theorem—Skorohod
embedding or KMT—a technical problem arises at exactly the same α. This fact is not very
surprising given that both [4] and [6] use essentially the same strategy.

The purpose of this paper is to explain a different proof of theorem 1 in the special case
E

∣∣Xj

i

∣∣3
< ∞. Even though the proof which follows is completely different from the proof

in [4, 6] it only applies for α < 1
7 , the same seemingly technical restriction given by the

original proof of theorem 1. It is somewhat surprising that both methods have exactly the
same technical restriction. However, we remark here that it is possible that further restrictions
must be imposed in order to prove Johansson’s result for a general class of random variables.
Indeed, as Martin pointed out to the author, Bernoulli ( p) last passage percolation (in the full
scaling limit) does not have RMT-type fluctuations if p is too close to 1.

2. Proof of theorem 1 for E
∣∣Xj

i

∣∣3
< ∞

The following proof is simply a corollary of recent theorems of Chatterjee [7] (see also [8]).
Although Chatterjee’s theorems have far reaching implications for universality, the proofs—
which are inspired by Lindeberg’s non-Fourier theoretic proof of the central limit theorem—are
as technically elementary as they are elegant.

We state a combination of theorem 1.3 and corollary 1.2 of [7] in the most convenient
form.

Theorem 2 (Chatterjee). Suppose that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are two
vectors of independent random variables taking values in R and satisfying, for each i,

EXi = EYi, EX2
i = EY 2

i and γ = max{E|Xi |3, E|Yi |3, 1 � i � n} < ∞. Suppose
that F is a finite collection of coordinatewise thrice differentiable functions from R

n into
R, U = maxf ∈F f (X), V = maxf ∈F f (Y), and g is any thrice differentiable function. The
following inequality holds:

|Eg(U) − Eg(V )| � K(g)
[
(γ nλ3(F))

1
3 (log |F |) 2

3 + γ nλ3(F)
]
, (9)
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where K(g) = 19
3 ‖g′‖∞ + 13‖g′′‖∞ + 13

3 ‖g′′′‖∞ and

λ3(F) = sup
f ∈F

{
sup

{∣∣∂p

i f (x)
∣∣ 3

p : 1 � i � n, 1 � p � 3, x ∈ R
n
}}

. (10)

In order to apply theorem 2 in our setting, let X = {
X

j

i

}N,k

i,j=1 and Y = {
Y

j

i

}N,k

i,j=1 be random

vectors which satisfy the conditions of theorem 2. Let fπ(x1, . . . , xNk) = k
1
6

N
1
2

( ∑
i�∈π xi� −

µ(N+k−1)+2σ
√

Nk

σ

)
for each π ∈ (1, 1) ↗ (N, k) and F = {fπ : π ∈ (1, 1) ↗ (N, k)}. One

easily checks that λ3(F) = k
1
2

N
3
2

. Using Stirling’s approximation one can check that

|F | = |(1, 1) ↗ (N, k)| = (N + k)!

N !k!
�

(
N

k

)k (
1 +

k

N

)N+k

. (11)

Applying Chatterjee’s theorem (theorem 2) leads to the following estimate:

|Eg(U) − Eg(V )| � K(g)

[(
γNk

k
1
2

N
3
2

) 1
3

(2k(log N − log k)

+ 2(N + k)(log (N + k) − log N))
2
3 + γNk

k
1
2

N
3
2

]
,

which vanishes as N, k → ∞ if k = o(Nα) if α < 1
7 and K(g) < ∞.

Johansson [14] showed that if the random variables
{
X

j

i

}∞
i,j=1 are geometric random

variables, then U �⇒ FGUE in distribution. Chatterjee’s theorem implies that the same is true
for any correctly normalized and centred random vector Y (the means and second moments
of the components of Y are centred and normalized to agree with those of X) if α < 1

7 . This

completes the proof of theorem 1 in the case E
∣∣Xj

i

∣∣3
< ∞.

Although the proof presented here is based on different methods from those in [4, 6], the
same technical condition is required. This leads to several natural questions.

(a) How large is the set of random variables that have the Tracy–Widom distribution as their
limit under the procedure described? As noted at the end of the introduction, in the
full scaling limit (i.e. N × �ρN�) the analogue of Johansson’s theorem [14] is not even
true unless some extra (and currently unknown) conditions are imposed on the random
variables. For example, it seems that there should be no large point mass at the top of the
support of the random variables [18].

(b) Alternatively, under only the condition of finite pth moment for the random variables
{Xj

i }∞i,j=1, how large can the rectangles be and still exhibit Tracy–Widom fluctuations?
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